Industry 4.0 Awareness Seminars Reports Template

1.	Date of the Seminar	21 June 2019	
2.	Organizers	CII and CMTI	
3.	Title of the seminar	Awareness Programme on Smart	
		Manufacturing and Industry 4.0	
		The Indian Perspective	
4.	Programme	Annexure 1	
5.	Report: suggested contents	Main takeaway / good suggestions	
	(1) Main takeaway / good suggestions	Information on Smart Sensors	
	(2) Clusters covered - Coimbatore	and controllers, smart	
	(3) Nos attended - 75	machines & intelligent	
	(4) Success stories that need to be	machining	
	compiled / shared – PPT on Smart	Learning importance of	
	Sensors & Controllers	machine accuracy	
		Understanding of big data and	
		cloud computing	
		Industry & Research institutes	
		are way to behind in	
		technology	
		Detailed study is required	
		before implementing smart	
6.	List of Speakers with contact details	Annexure 2	
7.	Presentations	Annexure 4	
8.	Resource persons for providing	Prof Dr P Radhakrishnan,	
	consultancy, skilling, guidance etc.	 Director Nanotech Research Facility PSG Institute of Advanced Studies Mr V S Shanmugaraj Scientist - F & Head SVT 	
9.	Photographs	Annexure 3	
10.	Learnings from the seminar	Audience wanted more case	
		studies rather than theoretical	
		presentations	

Annexure 1

संन्द्रल मैन्युफेक्वरिंग टेक्नोलॉजि इंस्टिट्यूट CENTRAL MANUFACTURING TECHNOLOGY INSTITUTE

Awareness Programme on Smart Manufacturing and Industry 4.0 The Indian Perspective

Date: 21 June 2019 Time: 1500 – 1905 hrs Venue: Hotel The Residency Towers, Coimbatore, Tamil Nadu

PROGRAMME			
1500 – 1515 hrs	Registration		
1515 – 1530 hrs	Welcome Remarks and context setting	Dr N Balashanmugam Joint Director Central Manufacturing Technology Institute	
1530 – 1540 hrs	Address by	Prof Mohan Emeritus Professor IISc	
1540 – 1550 hrs	Address by	Prof Dr P Radhakrishnan, Director Nanotech Research Facility PSG Institute of Advanced Studies	
1550 – 1600 hrs	Special Address by Chief Guest	Mr M Ramesh Past Chairman, CII Coimbatore Zone & Managing Director Alphacraft Pvt Ltd	
1600 – 1610 hrs	Tea Break	·	
1610 – 1640 hrs	Connecting Man and Machine for Smart Factory	Dr. Kaustubh Nande Director Marketing MSC Software Corporation, Hexagon Group	
1640 – 1710 hrs	Smart Machines & Intelligent Machining	Mr Prakash Vinod Scientist - F& Head NMTC	

1710 - 1740 hrs	Smart Sensors & Controllers	Mr V S Shanmugaraj Scientist - F & Head SVT
1740 – 1810 hrs	Smart precision metrology	Mr K Niranjan Reddy Scientist - E & Head UPE
1810 – 1840 hrs	CMTI Technologies & Technology Transfer Modalities	Dr N Balashanmugam Joint Director Central Manufacturing Technology Institute
1840 – 1900 hrs	Q & A	
1900 – 1905 hrs	Summing Up	
1905 hrs	Dinner	

<u>Annexure 2</u>

Speaker Details

S. No.	Name	Designation	Company Name	Phone	Email
1.	Mr M Ramesh	Past Chairman, CII Coimbatore Zone & Managing Director	Alphacraft Pvt Ltd	9843018651	ramesh@alphcraft. in
2.	Dr N Balashanmug am	Joint Director	CMTI	9449842676	balashanmugam.c mti@nic.in
3.	Mr VS Shanmugaraj	Scientist - F & Head	CMTI	9449842688	shanmugaraj.cmti @nic.in
4.	Prof Mohan	Emeritus Professor	IISC	91-80-2293 3291	smohan46@yahoo .co.in
5.	Dr. Kaustubh Nande	Director Marketing	MSC Software Corporation, Hexagon Group	9742236532	kaustubh.nande@ mscsoftware.com
6.	Mr Prakash Vinod	Scientist - F& Head	NMTČ		
7.	Prof Dr P Radhakrishna n	Director	PSG Institute of Advanced Studies	91- 4224344000	director@psgias.a c.in
8.	Mr K Niranjan Reddy	Scientist - E & Head	UPE	9449842672	niranjan.cmti@nic.i n

Annexure 3

Photo gallery

Annexure 4

Presentations

CMTI Technologies &

Modalities for Tecchnology Transfer

By Dr. N.Balashanmugam Joint Director, CMTI, Bangalore

Lenses for Night Vision & Thermography for Defense & Civil Industry

IR & Thermography system

Germanium and silicon for IR optics, Night Vision, Thermography System

IR Optics

Metal Mirrors for Space & Astronomical Systems

Ophthalmic, Intro-ocular & Contact lenses for Medical Sectors

Ultra Precision Mechanical Components

Air Bearing elements. Hydrostatic & Hydrodynamic Bearing Elements. High Precision Mechanical Elements.

Ultra Stiff Ultra Precision Diamond Turning Machine

Salient Features:

- High Stiff Hydrostatic Oil Bearing Slides
- Ultra Precise Aerostatic
 Spindle
- Natural Granite Bed with
 Vibration Isolation
 System and active leveling
- Max Workpiece: Dia 250 mm, Lg: 150mm

Ra: 2nm Form Accuracy: <0.2 μm

Ultra Stiff Ultra Precision Diamond Turning Machine

Ra: 2nm Form Accuracy: <0.2 μm

How to Finish Intricate Components?

Abrasive Flow Finishing Machine

Salient Features:

- Super finish / deburr ID and OD of components
- Radiusing of sharp edges
- Finishes inaccessible areas & complex internal passages
- Temperature control of abrasive laden polymer media
- Simultaneous processing of multiple passages

Applications:

- Micro/Nano finishing,
- Radiusing
- Deburring

Max. Hieght of the Component : 250mm

Abrasive Flow Finishing Machine

Centre tube for filter element

Abrasive Flow Finishing Machine

Shuttle valve for Aircraft landing gear actuator

Mass - IH: Projection Microstereolithography (PµSL)System

PMSL SYSTEM DEVELOPED BY CMTI

Mass IH Process- Projection Micro Stereo Lithography

Sukshm 3D Micro fabrication system

Salient Features:

- It enables complex 3D ultra fine solids to be made in a short time by means of spatial light modulation technique.
- A UV-curable resin on is cured at a superprecision resolution by a high-precision digital light exposure mechanism.
- 3-D structures are created by the layer-by-layer forming method, under which 3-D ultra-fine solids are formed automatically by repeated light exposure and resin coating.
- Ultra-fine Features down to 10um level cab be fabricated
- Layer thickness can be optimized to 5um level so that staircase effect can be eliminated with continuous exposer of UV projection

Applications:

- Polymer based 3D Microfabrication for vari applications in MEMS, Jewellery, Biomed industries.
- Fabrication of complex 3D Micro components
- MEMS sensors, actuators, and micro bellows
- Micro fluidic channels and micro fluidic devices
- · Bio medical Implants like coronary stents & scaffold
- Micro moulds and lenses for optics industry
- Micro mixers and micro pumps

Fabrication of Complex 3D Micro Components

Micro Rotor- Compressor

Micro Sensor Component

Micro Turbine

Micro Spring

www.cmti-india.net

Fabrication of Microneedle Electrodes

Fabrication of Polymeric Coronary Stents

Despite the development and progression of metallic stents, many concerns still remain because of their permanent nature. Thus, the concept of bio absorbable stents has emerged as an alternative to permanent metal stents.

Ref: http://emag.medicalexpo.com/article-long/8671/

https://www.dicardiology.com/article/elixir-receives-european-approval-fully-bioresorbable-novolimus-eluting-coronary-stent

"The dream has always been to find a temporary solution for a temporary problem, giving blood vessels a chance to bounce back to their natural state".

Polymeric Stent

Fabrication of Scaffolds, Tissue & dental Implants

Projection Microstereolithography (PµSL) technology can fabricate three-dimensional (3D) tissue engineered scaffolds with controlled biochemical and mechanical microarchitectures.

Hearing aid capsoft biocompatible implants

Dental implants

Tissue Engineering

Ceramic MSL

(a)	
Acc.V Spot Magn WD 1 mm 2.50 kV 2.0 30x 30.9 A. Bertsch EPFL-LMIS4 11-05-2003	
(b)	

Ceramic Micro Parts

- Alumina 75% by weight mixed with Polymer (HDDA)
- 3D parts made by MSL
- Polymer melted away by heating
- Green ceramic part is sintered at 1600 deg C
- Shrinkage is about 20%
- Scattering of radiation by ceramics is also an issue
- Curing depth and width gets reduced due to scattering

Issues: Scattering, Shrinkage, high viscosity

Thread Measurement System

Salient Features:

- Non-contact method of external thread measurement to check for dimensional tolerances.
- High speed thread
- Can be used for automating in manufacturing lines.
- User friendly thread measurement system requiring minimum human intervention.
- Records measurement results for statistical analysis.
- Measurement Range: Upto 30mm
- Measurement Accuracy: +/- 10 μm

Thread Measurement System

GUI of the System displaying the measurement of a thread gauge

3D SCANNER

Salient Features:

- Short measuring times.
- Actual and nominal comparison with CAD data.
- Portable as it can be mounted on a tripod/robot.
- Automated registration using rotary table and markers.

Applications

- Dimensional measurements
- Reverse Engineering
- Automated Inspection Tasks
- *Measurement Area: 267*205*150 mm3*
- Accuracy: 150 μm
- Fastest Measurement Time: 4 secs

3D Scanner- Point cloud captured

(d) A small locating component

(e) Lattice Mirror Housing

ULTRA STIFF ULTRA PRECISION HYDROSTATIC SLIDE

Salient Features:

- Hydrostatic oil Bearing gives infinite life
- True motion, zero stick-slip, zero backlash & Maximum positioning accuracy
- High stiffness for Heavy loads & excellent geometric performance
- High Dampening effect from oil film for vibration from machining process
- Direct drive with Integrated Linear motor with low cogging force
- Ultra precision Linear Glass Scale for position feedback

Applications:

• Ideally suited for development of Ultra Precision Machines

Nano Slide way HS 200

Model & Type	HS 200; Fully constrained hydrostatic, box way slide
Travel	200 mm (8 Inch)
Load Capacity & Stiffness	1000Kg (10,000 N) 1000N/μm
Drive System	Brushless DC Linear Moto
Feedback Resolution	32 picometer
Straightness	Horizontal :0.2 µm over ful travel
	Vertical : 0.4 µm over full t

<page-header>

HYDROSTATIC SLIDE APPLICATIONS

HIGH PRECISION MILLING/ BORING MACHINES

DIAMOND TURNING MACHINES

HIGH PRECISION GRINDING MACHINES

HARD TURNING MACHINES

Thermal Error Compensation for Machine Tool Applications

Machine tool thermal distortion can account for 75 % of the total machining error.

Salient Features:

- RTD based Temperature Sensors
- *Recursive Neural Network based Algorithm*
- CNC Interface module
- Real Time Compensation
- Upto 80% error compensation contributed by thermal distortion
- Low Cost solution
- Can work with all general purpose CNC controllers

Blue: Without Compensation Pink: With Compensation

Machine Health Management System (MHMS)- Machine Fault Diagnostic Module

Salient Features:

- Machine tool vibration measurement
- Data acquisition through MEMS Accelerometer
- Signal Conditioning and Analysis
- Fault diagnosis for Unbalance, Misalignment, Mechanical looseness and Bearing faults
- Fault display on LCD Display Screen

Centreless Grinding Machine GN 3050

cmti

Facing and Taper Boring Machine (FTB -320)

Line Boring Machine (LBM

Finish Turning Machine

Key Stone Piston Ring Grinding Machine (GKPR)

Sphere Lapping Attachment for CNC Lathe

Modalities for Technology Transfer

- Calling for Expression of interest
- Conducting Pre application conference
- Inviting Request for Qualification {Direct or through e-tendering (forward auction)}
- Evaluating Requests and selection of firms
Modalities for Technology Transfer

Technlogy transfer is done on non exclusive basis

➢In certain cases, Technology Transfer is done on exculsive basis with lock in period

License fee is different for both

Modalities for Technology Transfer

Technlogy transfer involves Licence fee

Royalty

Modalities for Technology Transfer

What do we offer?

- ➢Blue print of drawings
- ➢ Bill of Materials
- >Technological process for critical parts
- ➢Bought out items
- ➤Vendor's list
- Testing Protocols
- Machineries and Infrastructure required
- Data base of process receipe
- ➤Hand holding

Looking forward to have our Technologies in your factories

Thank You

Connecting Man an Machine for Smart Factory

Dr. Kaustubh Nande Director – Marketing MSC 2809 tware Indo-Pacific Global leader in **sensor**, **software**, and **autonomous** technologies committed to

empowering an autonomous future

Leading a revolution

From automation to autonomy

Autonomy is the ultimate form of putting data to work

Industry 1.0-----Industry 4.0

3 | Hexagon Overview

The road to autonomy

12

CORE CAPABILITY

Our core capabilities

CORE CAPABILITY Design and Simulation

4 | Hexagon Overview

CORE CAPABILITY

Smart Factories

that learn and adapt quickly to changing conditions in real time, pursuing perfect quality with optimised design, requiring fewer inputs and producing zero waste

SUSTAINABLE VALUE CREATION

- Fewer inputs
- Zero waste
- Perfect quality

PRIMARY APPLICATIONS

- Automotive
- Aerospace
- Electronics
- Medical
- Heavy industry
- Power & energy

Did you know?

Each year, Hexagon technology touches:

- **75%** of cars produced
- **90%** of aircraft produced
- **85%** of smart phones produced

We have expertise in and connect all stages of the manufacturing lifecycle:

DESIGN AND ENGINEERING (CAE)

Optimise designs and ensure manufacturability

PRODUCTION (CAD/CAM)

Deliver on design intent and product quality with minimal waste

HEXAGON

METROLOGY HARDWARE/SOFTWARE

Capture real-world data for positioning and inspection

The Hexagon Digital Thread: Design to Manufacturing to Quality

Ecosystem for Smarter Manufacturing

Industrial Metrology Applications: World Leader in Quality Measurement

Confidential

Production Software: World's #1 CAM provider

- CADCAM to address *metal*, sheet metal and woodworking industries
- MES for die/mold processes, small scale ERP tools, machine simulation technologies
- Direct offices in 13 countries, development teams in 7 countries, 700+ employees, 140 resellers in 45 countries
- Strong relationships with all the largest machine tools OEMs

- R&D in **10** Countries
- 90% of top 1000 manufacturing co.s use MSC Solutions
- Part of the US\$ 4.5B Hexagon AB

Canada

Brazil

Sweden

Italy

Russia

South Korea

Taiwan

Australia

Japan

MSC's Virtual Factory Ecosystem

Challenges faced by Manufacturing Industry

Connected Plant Floor to Improve Operational Efficiency

Manufacturers are missing out on a critical opportunity: Leveraging real-time data on cycle times, quality yields by machines, production run, utilization and other metrics to improve Operational Efficiency of the plant.

Preventive maintenance without affecting throughput

Keeping equipment functioning is an essential part of running a manufacturing facility. By collecting real-time data, and comparing with failure scenarios, it is possible to predict the appropriate time frames that the machines in the factory should be maintained.

Connected Quality for Final Inspection

Process of quality assurance, quality control, and QC inspections need to be optimized to increase productivity and lower costs

Better supply chain visibility

It is essential to integrate all the business applications including ERP, CRM, PLM with MES systems for a better visibility of supply chain

Customer-facing self-service applications

An organization's customers typically consist of end-customers, partners (or service providers), and sub-contractors, or any combination of these. These customers have different needs, concerns and requirements for working with and interacting with manufacturers.

References

10 greatest Manufacturing Challenges for CIOsTop five challenges facing Manufacturing IndustrySix challenges facing Modern Manufacturing Companies13Xalt

DAWN OF TIME

PRINTING PRESS

INTERNET

loT

DATA USAGE

INTERNET OF THINGS

Introducing Xalt

.......... One of our major R&D initiatives is a technology framework called Xalt, which will eventually underpin all of our solutions - making them faster, easier to use, more connected, and autonomously intelligent. Xalt framework: Artificial intelligence Edge computing ٠ Mobility • -0 - 0 - 0 - 00-0-0-0-0 Advanced visualisation Enterprise integration ٠

Digital Transformation with Xalt

Infinite Connectivity for Disconnected Data

CLOUD ENABLEMENT

Connecting B2B with an orchestrated microservice framework and cloud analytics for big, fast data.

EDGE CONNECTIVITY

Processes, combines, and analyses IoT and sensor data at the edge of the network and puts it to work with AI.

ENTERPRISE INTEGRATION

Plug-in enterprise integration for legacy connections, databases, and IT systems. equipped with middleware for messaging, file, system, and database connectivity and transformation.

Secure and nimble framework that is native iOS- and Android-ready with zero client footprint and networkoptimized for visualization of multiple georeferenced 3D & 2D data sets

UBIQUITOUS A.I.

Multiple AI data sources including imagery, video, and big data for applications such as predictive maintenance, change, and anomaly detection.

VISUALIZATION

Visualizes 2D/3D data, including point clouds, and is optimized for all mainstream OS, mobile, and web platforms. Augmented reality applications are validated on HoloLens, Daqri, and Oculus, and can process enormous datasets at high speeds.

Security without Rigidity: Xalt is HIPAA and PCI-compliant, is SOC2 certified, and has passed the United States Department of Defense regulatory process.

Addressing the Complex Real-life Challenges in Manufacturing – not just Connectivity

THE BIG DATA DISCONNECT

Organizations have limited visibility to at-source data

QUALITY / COST INVERSION

Produce more at higher quality; deliver it faster at lower costs

4.0 MODELS & MARKETS

Lost revenue due to untapped, data-driven models and channels

PROCESS OPTIMIZATION

Real-time logistics, line uptimes, edge analytics of machinery

SMART QUALITY ASSURANCE

Real-time updates and alerts for on-premises, cloud, and sensor assets

CONNECTED WORKERS

Real-time mobile access to consolidated data (sensors, alerts, and workflows)

Why it's Different

Leverage Your Existing OS

Smart Factory: Areas of Focus

Connected Worker Innovating Work in the Field

Connected Worker Solutions

AUTOMATED MAINTENANCE + SERVICE WORK-ORDERS

ACCURATE TIME PLANNING + PRIORITY ESCALATIONS

TOOL + EQUIPMENT TRACKING

SUPPLY + INVENTORY LOOK-UP AND REQUISITIONS

Smart Factory Sensor Fusion with User Enablement

Smart Factory

MANUFACTURING					PLANT OPERATIONS						
TRANSPORTATION		METAL + MACHINERY			ELECTRICAL		MECHANICAL		UTILITY SYSTEMS		
 Body + Finished Good MFG Motor Vehicle + Truck Heavy Duty Vehicle Specialty Vehicle Aerospace 		 Packaging Machinery Door + Window Elevator + Convery Material Handling HVAC +Industrial Refrigeration 			Sub Contracting Of: - Electrical Site Prep - Commercial Bldgs - Electrical Finishing - 100 Employees+		Installation Of: - HVAC System - Plumbing + Piping - Drywall + Structural - Elevator+Equipment		Construction Of: - Oil + Gas Pipelines - Power + Comm. Lines - Water + Sewage Systems Project		
Inspections	Field S	service	Maintenance		Planning	Requisitions		Tracking		Reporting + Analysis	
 Inspection Plans Times Tests Shared File Specs Rework WOs Production to Delivery Tracking 	 Workorder Mgmt Time Allocation Supply Reqs Inventory Mileage Tracking 		 Workorder Mgmt Time Allocation Supply Reqs Inventory Emergent Alerting 		 Jobsite HR Timesheets Payrate plan Project time Budgeting 	- Inv - Pr - Ec Re - Su Or	ventory efab Reqs juipment entals ipplier ders	entory Asset Mgmt: ab Reqs - Tools ipment - Equipment tals - Rentals plier - Maintenar ers Schedules		 Job Status Daily Site Reporting Project Budget Deadline Tracking 	

I.

I.

3D visualisation allows workers to lay piping and instrumentation diagram data over built structures

Xalt Framework

Xalt | Integration provides interfaces to connect multiple software applications and a highly configurable *no-code* business rules engine to solve enterprise-level integration challenges.

It's the glue that holds solutions together

Asset Management

Minimize Downtime. Maximize Efficiency.

- System Health
- Asset Utilization Charting
- Facility Environment Tracking
- "OEE"
- System Notifications
- HMI Service Connection

HEXAGON

Factory Monitoring and Load Balancing

Scope

- Manage and see Assets in Smartphones
- Receive Notifcations on CMM Started, Busy, Idle, Crash, Error
- Master complexity of setups in OEM
 environment
- Autodiscover assets
- Manage loads based on availability

Towards Predictive Maintenance

SQ Health Concept

Principle—Collect and Monitor the signal from the control cabinet, for example, the voltage. current.servo signal to make the pre-alarm of the CMM situation

Stepwise approach:

- Step 1: Rules-based • notifications on predefined thresholds
- Step 2: Condition • monitoring on parameters based on statistical methods
- **Step 3:** Predictive • maintenance with ML algorithms trained on historical telemetry (machine, environment), failure/service events and process data

时间 Time

Data-Driven Customer Intelligence

- Observer logs usage data of different devices
- Mine this data for Business Insights
- Leverage AC's Advanced Analytics Platform SIMPALA
 - Usage Analytics module available
 - State-of-the-art data mining and machine learning cutools
- 1) Detect Clusters
- 2) Map to Personas
- 3) Understanding and Decision Making

	Prism	Reflectorless	Local Scan	Stake Out	Free Stationing
Persona 0	185	806	418	76	497
Persona 1	809	200	84	423	501
Persona 2	508	490	244	256	498

Engineering

Infrastructure

Maintenance

In-Plant Logistics, Monitoring and Detection

Logistics Management

Hexagon Digital Thread from Design to Production to Quality

Capturing the End to End Additive Manufacturing Process Chain

Design space-Model

Topologyoptimization

Active bonnetfunction

Supporting Distortion and structure residual stress optimization optimization

Manufacture LAM

Testing

simufact

41 Xalt

Smart Factory Solutions APAC Concept

Equipment & Environmental Status

Demo Centre - Work in progress

Precision and Smart

Metrology

K. Niranjan Reddy Scientist - E & Head – UPE CMTI, Bangalore.

If you measure

"Do it with Utmost Care"

"Remember the Measuring Errors"

The Science of Precision Measurement

"METRO" & "LOGY" are Greek Words

Meaning

"Measurement" and "Science"

Respectively

Central Manufacturing Technology Institute | www.cmti-india.net

Metrology Started in Ancient Egypt in

2750 BC

First Unit of Length Was Cubit

Cubit - Length of the Reigning

Pharaoh's Forearm

Central Manufacturing Technology Institute | www.cmti-india.net

Journey towards Precision

- Started in 1775 with Wilkinson machining a \u00e91800 mm bore to 1 mm accuracy
- •Today conventional precision machining is being carried out to dimensional accuracies of 1 μ m on 100 mm length

Dimensional Accuracies since 1900

What is 1µm

Human hair φ 50 μm • μm

1nm=1/1000 µm

Central Manufacturing Technology Institute | www.cmti-india.net

27/06/2019

7

What is **1 arc sec**

Central Manufacturing Technology Institute | www.cmti-india.net

The Goal of Metrology

- Accept good products
- > **Reject bad products**
- Better to reject few good ones than to accept a few bad ones

Classification of Metrology

Dimensional Metrology

- > Surface Metrology
- Co-Ordinate Metrology
- > Mass Metrology
- Force Metrology and So on

Precision Measurements and **C//Ci** Metrology

BASIC TERMINOLOGIES

Basic Terminologies

RESOLUTION (of a displaying device)

Smallest value that can be indicated by the displaying device.

or

Smallest difference between indications of a displaying device that can be meaningfully distinguished

Basic Terminologies

<u>ACCURACY</u>

Closeness of agreement between the result of measurement and the true value of the measurand.

PRECISION

Closeness of agreement between the results of successive measurements of the same value of a quantity carried out under identical conditions at short intervals of time.

(Precision is also called Repeatability)

Graphic Distinction Between Accuracy and Precision

Basic Terminologies

<u>REPRODUCIBILITY</u>

Closeness of agreement between corrected results of measurements of the same value of a quantity when the measurements are made under different conditions.

The ability of an item to perform a required function under stated conditions for a stated period of time.

Basic Terminologies

TRACEABILITY

The concept of establishing valid calibration of a measuring standard or instrument by step-bystep comparison with better standards upto an accepted national or international standard.

Measurement Standard

Material measure or physical property which defines or reproduces the unit of measurement of a base or derived quantity.

Types of Measurement Standard

FUNDAMENTAL OR ABSOLUTE STANDARD FINTERNATIONAL STANDARD NATIONAL OR PRIMARY STANDARD **REFERENCE STANDARD** SECONDARY STANDARD WORKING OR STANDARD

Hierarchy of Traceability

Primary Standard of Length (Metre) Established by Interferometry

Secondary Standard of Length Verified by Interferometry

Grade "00" Slip gauges Calibration Grade Verified by Interferometry

Grade "0" & "1" Slip gauges Verified by high magnification comparator

Grade "2" Slip gauges Verified by high magnification comparator

Work piece

Verified by suitable gauging practice

Central Manufacturing Technology Institute | www.cmti-india.net

The metre is defined as the length of the path travelled by light in a vacuum in 1/299 792 458 second

Length Traceability at CMTI

Factors effecting the Accuracy of **C**///C

Factors affecting the Standard

Factors affecting the Work-piece

Factors affecting the Measuring Instruments

Factors affecting the Person

Factors affecting the Environment

Factors affecting the Accuracy of *C///Cr* Measurements

Environmental Effects:

- > Room Temperature
- Part Temperature Stabilization
- Temperature Variation
- Humidity
- Vibration Level
- Dust Level
- > Air Flow
- Lighting
Precision Metrology Laboratory at CMTI

NABL Accredited Dimensional Metrology Lab

Lab conforms to ISO/ IEC 17025:2005

Measurement of Dimension, Form, Surface Texture and Gear Parameters

Vibration Temp: 20 : < 0.2 ± 0.5°C μm "India's one of the kind Clean metrology lab that is housed Noise: Room <60 dB Class: 6m below ground" 10,000 **Central Manufacturing Technology Institute** 5/2019 www.cmti-india.net

Dimensional Metrology at CMTI

Ultra Precision Co-ordinate Measuring Machine

Co-ordinate Measuring Machine

Gauge Block Interferometer

Surface Metrology at CMTI

Form profiler

Flatness interferometer

Roughness Tester

Optical Profiler

Trends of Accuracy/ Uncertainty in//// Length Measurement

Metrology Artefacts

Central Mandacternt Status: In the country most of these artefacts (>90 %) are being imported

Efforts of CMTI in development of Indigenous Metrology Artefacts

High Precision Optical Standard Glass Scales

RANDE: 0, 10mm RANDE: 0, 10mm				*			0
2 manufarmantaria	Technical Data						
150 mm	Graduation Pitch		: 0.1 mm		17Wall		1
GE: 0.1 mm	Graduation thickness		: 12 µm			The	-
RANLC	Grating Accuracy		: < 2 µm		Technical 1	Data	1
	Range	L 175 mm	W 20 mm	T	Graduation Pitch	:1°	
	0-10 mm	75 mm	20 mm	5 mm	Graduation thickness	:4 µm	
					Grating Accuracy	: < 2 µm	-

Linear Standard Glass Scales

In-house facility used:

- 1. Femtosecond laser micromachining system
- 2. Confocal Microscope

CenBal Mahtrac Rregision CMM stitute | www.cmti-india.net

Angular Standard Glass Scale

Transformative Forces Reshaping the ////

Central Manufacturing Technology Institute | www.cmti-india.net

The need for Smart Metrology

Smart Metrology Challenges

Factors to consider in adapting Smart ///// Metrology

Central Manufacturing Technology Institute | www.cmti-india.net

Inline Metrology

Inline Metrology—Market Size and Forecasts

Speed, accuracy, and flexibility are key attributes that enable optical scanners to replace traditional CMMs.

Mega Shifts

Central Manufacturing Technology Institute | www.cmti-india.net

Smart Metrology Lab

Smart Metrology Lab

Smart Inspection

- Automatic generation of Inspection Data sheet
- Wireless exchange of inspection data

Smart Data Management

- Integration across
 - Inline
 - Manual
 - CMM Inspection
- Real Time Data Visualisation

Smart Quality Management

- Improved Traceability
- Statistical Process control data (Cp,Cpk)
- Customized
 Inspection reports

Smart Inspection

Smart Inspection Facility encompassing

- Smart Measuring Instruments
- Smart Quality Monitoring
- Smart Process Monitoring

Smart Inspection Lab

A smart inspection and data management application for digital metrology is setup.

The application would collect, store, present digital data from Smart Bluetooth enabled instruments and data from other instruments/ equipments / gauges and CMM.

Coate analytics suct as Cost are also performed to process capability information 6/2019

SMART Automated Inspection System Developed by CMTI Auto-Correction Feedback

Multi Gauging System for Sabot

Multi Gauging System for Penetrator

Multi Gauging System for Tail Piece

SABOT

TAIL PIECE

The system was developed for comparing manufactured dimensions of the components with that of the designed dimensions, record the deviations and indicate whether the component can be accepted, rejected or needs rework.

- Automatic gauging significantly cuts down the inspection time
- Eliminates human measurement error
- Measured data is stored and accessed from the PC for statistical analysis.
- Online correction for the dimensional variation by automatically feeding the result of inspection to CNC system

<u>Highlights:</u>

•Automated Measurement of Internal Thread Parameters, Form Errors and Dimensions

•18 Parameters measured and documented in just over 3 minutes

Multi Sensor Implementations

Parallel Sensor Implementation on a Co-ordinate Measuring Machine

Changeable Sensor Implementation on Surface Texture Measuring Device

Automated Integrations

Faster metrology due to the automated integration of a CMM into material flow by Robot loading.

Process Correction Solutions

Measurement of X-offset / Tool Radius as well as automatic quick correction for it from direct measurement of a production asphere.

Smart Metrology Cell

Digitization

Digitization of Industrial Measurement Throughout the Supply Chain

Revenues from ERP software will surpass the hardware revenues over the next 5-8 years.

www.cmti-india.net

Success is a new dimension.

One stop solution for a complete range of dimensional, form, gear and surface roughness measurement & calibration accredited by NABL

From Ultra precision CMMs to Gauge block interferometer, Flatness interferometer to Nano surface optical profiler, our calibration services guarantee *your* success.

hankyou []][[] Metrology Services

Central Manufacturing Technology Institute Central Manufacturing Technology Institute, Tumkur, Road, Bangalore – 560022 metrologylab.cmti@nic.in

Smart Machine tool and Intelligent Machining

Gopi Krishna S, Scientist C

Smart Manufacturing, Precision Machine tools & Aggregates

Central Manufacturing Technology Institute, Bengaluru

Outline

- Machining processes evolved around Sensing, process model, knowledge base and process control is intelligent machining.
- Smart machine is an intelligent device that uses machine-to-machine (M2M) communication and are able to make decisions and solve problems without human intervention.
- An Smart machine tool takes the CAD data, the materials and the set-up plans as inputs and can take autonomous decisions and produce accurate machined parts with quality, machine condition and productivity data as outputs
- Development of technology for smart machine tools and intelligent machining is one of focus area of CMTI activities
- Improvement in accuracy of products, along with productivity and ease of operation is our targets for technology development in this domain

Concept of a Intelligent machine tool

[]

What is Intelligent Machining

Software Structure of Intelligent Machining

Benefit from Smart machine tools & Intelligent Machining

Development of an Intelligent Ultra Precision Turning Machine

Intelligent Ultra precision Turning Machine (iUPTM)

A state of the art smart machine with intelligent features, developed by CMTI, for producing non-ferrous, IR and polymer components with optical quality. IUPTM a world-class, next generation machine tool with inbuilt intelligence.

Applications: Electro-optics, Space, Defense, Ophthalmic Industries, Photonics

Intelligent Machine error compensation Real-time Positioning, Geometrical & Thermo elastic error compensation taking feedback from sensors mounted on machine

Open architecture Motion Control Can integrate user developed control algorithms Intelligent Ultra Precision Turning Machine (iUPTM) developed at CMTI

Intelligent Machine Diagnostics

- Spindle & Slide Health Monitoring
- On Machine Spindle balancing
- Sensor fault detection
- Tool condition monitoring

Remote monitoring, diagnostics & control through internet

Intelligent Machining & Prognostics Surface error predictions for intelligent machining

Diamond Turned Mirrors on CMTI's iUPTM for industrial applications

Real-time Thermal Error Compensation for Machine Tools

The Thermal induced displacement Errors can be reduced from 50 micrometres to 3 micrometres with the compensation

Improvement in Machining accuracy with Real Time thermal error compensation

Problem Statement : The radius use to go out of specification after machining of 5 to 6 components.

UPCMM

Spherical profile component machined in DTM

Parameter	Specification
Radius (mm)	3.288 ± 0.001
Form (µm)	1.2

Nanoshape

3.2892 3.2889 3.2886 3.2883 3.2883 3.2883 3.2883 3.2883 3.2883 3.2887 3.2874 1 10 19 28 37

Spherical Componets

Radius Measurement after thermal error compensation

46

CITE Online Health Monitoring Of Machine Tool Spindle

Features:

- Autonomous, in-situ spindle health monitoring system based on sensor feedback
- Online spindle problem identification using frequency analysis.
- HMI provides "a basic window for machine operators" and another window for "advanced diagnostics " with alarms.
SMLA **Tool Condition Monitoring in Ultra precision Machining**

c_{///}ti

On-Machine Dynamic Balancing

Balancing of Rotors Micro Engineering and Nano Technology, Central Manufacturing Technology Institute, Bangalore,India-560022			
Intial Unbalance induced vibration(mm/sec)	1	Intial Phase Angle (Degrees)	135
Trial Mass (gms)	5		
Vibration with trial mass(mm/sec)	7	Phase Angle (Degrees)	45
Required balance weight (gms)	35.3553	Phase Angle(degrees)	-81.8699
	Calculate	Cancel	

On Machine Tool Setting And Monitoring By CMTI-Optical Tool Set Station (OpToSS)

Optical Tool Set Station (OpToSS):

- Tool Radius Measurement
- Tool Position offset (X & Z)
- ✤ Tool Height Setting (within 6µm)
- Tool Inspection (Damage & Wear)
- Light Intensity Control for Diamond & CBN Tools

Accuracy	<i>≤</i> 5 μm
Kinematic mount	≤ 1.6 μm
Repeatability	
Resolution	0.8 μm
Approx. Weight	2.5 Kg
	(Ergonomically designed for ease
	of handling and mounting)

cjijti

Optical Tool Set Station (OpToSS)

IOT Enabled "SMART" Metal Cutting Machine empowering a Legacy Machine @CMTI

Smart features

Sensor modules

- Temperature : Machine thermal plot
- Vibration : Machine health
- Evaluate TcP (tool center point) drift
- Pressure : Spindle coolant pressure
- Energy : Downtime of the machine
- Vision : In-situ inspection / Quality

<u>Outcome</u>

- ✤ Generate diagnosis reports / action plan
- Classify reports based on severity
- Enable deep dive information for better process understanding
- Establish data base for further analytics

<u>Outputs</u>

- IOT enabled connected machine
- Remote access of machine health and process data
- Real time Machine health monitoring
- Energy monitoring
- ✤ Better process monitoring
- Reduced machine down time

Dashboard

Converting a Legacy 3D printer to IOT enabled printer

- A IOT enabled Control GUI has been developed to control the 3D printer in a closed loop. The following features have been implemented.
- Cloud based 3D printing by uploading G-code via Any internet connected device, i.e Mobile Phones & Tablets.
- Cloud based closed loop monitoring of process parameters & Temperature signatures of subsystems of 3D printer
- A complete live fabrication process can be viewed online via IOT process monitoring camera

PREDICTION OF SURFACE FINISH IN DIAMOND TURNING PROCESS

Prediction of Surface roughness-MRA

- Independent variables:
 - > Cutting conditions:
 - Speed (S)
 - Feed(f)
 - Depth of Cut (doc)
 - Vibration from Process:
 - Vibration in tangential cutting force direction, Vx
 - Vibration in feed direction, Vy
 - Vibration in thrust cutting force direction, Vz
- Dependent variable: Surface finish

Comparison of measured and estimated values of surface roughness

V. Shanmugaraj Central Manufacturing Technology Institute (CMTI) Bangalore

Internet of Things(IoT)

Sensors

Controller (Data Acquisition and Analytics) Cloud

Smart Manufacturing (IIoT)

- A Transducer is a device that can convert energy from one form to another
- A Sensor is a device that can detect a physical quantity and convert the data into an electrical signal.
- Sensors are also a type of Transducer

Sensors

- Macro (Conventional)
- Micro (MEMS Micro Electro Mechanical Systems)

Sensors

- Temperature (upto 10Hz)
- Pressure
- Flow
- Force
- Torque
- Accelerometers (upto 20 KHz)
- Load Cells
- Acoustic (upto 1 MHz)
- Displacement
- Velocity
- RFID
- Gyroscopes

Transduction Principle

- Change in Voltage
- Change in Current
- Change in Resistance
- Change in Capacitance
- Change in Impedance

Output

- Machine status monitoring
- Higher Productivity
- Lower down time of the machine
- Preventive maintenance
- Better utilization of Resources

Temperature Sensors

- RTDs (Resistive Temperature Detecting)
- Thermistors
- Thermo-couples
- Factors
 - Temperature Range
 - Sensitivity

Pressure Sensors

- Absolute A Sensor that Measures Input Pressure in Relation to a Zero Pressure – Altitude Measurement
- Differential A Sensor that Is Designed to Accept Simultaneously Two Independent Pressure Sources. The Output Is Proportional to the Difference Between the Two Sources – Airspeed Measurement

Flow Sensors

- Variable Area (rotameters)
- Rotating Vane (paddle & turbine)
- Positive Displacement
- Differential Pressure
- Vortex Shedding
- Coriolis Mass
- Ultrasonic

Force Sensors

- Piezo electric
- Strain Gauge

Torque Sensors – Strain Gauge

Accelerometers

- Piezo Resistive
- Piezo Electric
- Strain Gauge
- Inductive

Load Cells

- Tensile
- Compression
- Bending Beam
- Strain Gauge
- Displacement Sensors – Capacitive – Eddy Current

